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Creep rupture of viscoelastic fiber bundles
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We study the creep rupture of bundles of viscoelastic fibers occurring under uniaxial constant tensile load-
ing. A fiber bundle model is introduced that combines the viscoelastic constitutive behavior and the strain
controlled breaking of fibers. Analytical and numerical calculations showed that above a critical external load
the deformation of the system monotonically increases in time resulting in global failure at a finitg time
while below the critical load the deformation tends to a constant value giving rise to an infinite lifetime. Our
studies revealed that the nature of the transition between the two regimes, i.e., the behiqabitiod critical
load o, strongly depends on the range of load sharing: for global load sharhmas a power law divergence
at o, with a universal exponent of 0.5, however, for local load sharing the transition becomes abrupt: at the
critical loadt; jumps to a finite value, analogous to second- and first-order phase transitions, respectively. The
acoustic response of the bundle during creep is also studied.
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Fiber reinforced composites are of great technological imscopic failure events. In the present study we focus on the
portance due to their very good performance under extremgeneral aspects of creep rupture, i.e., the behavior of the life
circumstances. Under high steady stresses these fiber coiitme of the bundle as a function of the external load, its
posites may exhibit time-dependent failure called creep rupdependence on the range of load redistribution, furthermore,
ture, which limits their life time and consequently has a highgeneral aspects of the acoustic response of the bundle are
impact on the applicability of these materials for construc-considered without fitting the theoretical results to any spe-
tion elements. Both natural fiber composites such as woogific materials.

[1,2] and various types of fiber reinforced compositgs5] In order to work out a theoretical description of creep
show creep rupture phenomena, which have attracted cofailure of viscoelastic fiber composites, we improve the clas-
tinuous theoretical and experimental interest over the pastical fiber bundle mod¢l7,9] that has proven very successful
years. The underlying microscopic failure mechanism ofin the study of fracture of disordered materigl®-19. Our
creep rupture is very complex depending on several charadnodel consists oN parallel fibers having viscoelastic con-
teristics of the specific types of materials, and is far fromstitutive behavior. For simplicity, the pure viscoelastic be-
being well understood. One of the most important aspects dfavior of fibers is modeled by a Kelvin-Voigt element that
creep rupture is the statistics of life tinfer time to failurg¢ ~ consists of a spring and a dashpot in parallel and results in
as a function of the external steady load, however, only dhe constitutive equationr,= B¢+ Ee, wheres denotes the
limited number of systematic experimental works is avail-damping coefficient, an& the Young modulus of fibers, re-
able for fiber reinforced compositg83—5|, more information ~ spectively. This equation provides the time-dependent defor-
has been accumulated about natural fiber compopltgg ~ matione(t) of a fiber at a fixed external loadl,,

In Ref. [6] a theoretical model of creep rupture of brittle

matrix composites reinforced with time-dependent fibers was _ 90, -EV —Et/

worked out in the spirit of the classical model of Coleman s(t)= E [1-e"5]+e0e™=, @

[7]. For natural fiber composites a so-called damage accumu-

lation model has been deve|0ped, which S|mp|y assumes thmhere&‘o denotes the initial strain &t=0. It can be seen that
the time derivative of the accumulated damage depends ex{t) converges tooy/E for t—co, which implies that the
ponentially on the external load history of the specirfigh  asymptotic strain fulfills Hook’s law.

In the present paper we Study the creep rupture of fiber If no fiber failure occurs chl) would fU”y describe the
composites where the fibers have viscoelastic behavior arféime evolution of the system. Motivated by the experimental
the microscopic damage mechanism leading to creep ruptu@bservations of the acoustic respoie] of fiber compos-
is the strain-dependent breaking of fibers under the time evdtes during creep, we introduce a strain controlled failure
lution of the deformation of the system. Creep failure testscriterion to incorporate damage in the model: a fiber fails
are usually performed under uniaxial tensile loading wherfluring the time evolution of the system if its strain exceeds a
the specimen is subjected either to a constant legdr to ~ damage thresholdy, which is an independent identically
an increasing |0a(ﬂramp |Oading and the time evolution of distributed random variable of fibers with probablllty denSity
the damage process is followed by recording the stsaii ~ p(e4) and cumulative distributioﬁ’(sd)=ff)dp(x)dx. Simi-
the specimen and the acoustic signals emitted by microtar strain controlled breaking was recently used in R24.

Due to the validity of Hook’s law for the asymptotic strain
values, the formulation of the failure criterion in terms of
*Electronic address: feri@ical.uni-stuttgart.de strain instead of stress implies that under a certain steady
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load the same amount of damage occurs as in the case détermined by evaluating the integral Ef) over the whole
stress controlled failure, however, the breaking of fibers iddomain of definition ofP(e). From the theoretical and ex-
not instantaneous but distributed over time. When a fibeperimental point of view it is very important hoty depends
fails its load has to be redistributed to the intact fibers. As thevon the external load abowe.. Whena is in the vicinity of

simplest approach, we assume global load shdrifigl5—

o, .e.,00=0.+tAoy, whereAoy<o, it can be expected

19], i.e., after a failure event the excess load is equally disthat the curve ok (t) falls very close toe, for a very long
tributed among the intact fibers, and hence, at a certain stratime and the breaking of the system occurs suddenly. Hence,

¢ the load on the surviving fibers of the numidey(e) can be
cast into the formo(g)=o0oN/Ng(e)=0o/[1—P(g)]. The

time evolution of the system under a steady external logd
is finally described by the equation,

o

o .
1_—P(8)—ﬂ8+E8,

)

the total time to failure, i.e., the integral in EG), is domi-
nated by the region close . whenA o is small. Making
use of the power series expansion E).the integral in Eq.
(5) can be rewritten as

,BJ de ——7——

1- P(e)

(& —8)

(6)

where the viscoelastic behavior of fibers is coupled with thevhich has to be evaluated over a smalinterval in the

failure of fibers in a global load sharing framework.
For the behavior of the solutions of E() two distinct

regimes can be distinguished depending on the value of the

external loado,. Whenoy is below a critical valuer. Eq.
(2) has a stationary solutioss, which can be obtained by
settinge =0,

op=Eeg1—P(eg)|. (3

It means that until this equation can be solved fgrat a
given external loadr,, the solutione(t) of Eq. (2) con-
verges toeg whent—oo, and no macroscopic failure occurs.
However, wheno exceeds the critical value. no station-
ary solution exists, furthermore, remains always positive,
which implies that foro> o the strain of the system(t)

monotonically increases until the system fails globally at a

time t;.
In the regimer <o Eq. (3) also provides the asymptotic

constitutive behavior of the fiber bundle that can be mea- t=—

sured by controlling the external loa and letting the sys-

tem relax toeg. It follows from the above argument that the

critical value of the loadr. is the static fracture strength of
the bundle that can be determined from HE8) as o
=Ee[1—P(g.)], whereg, is the solution of the equation
dUO/dss|sC:O| as shown by Sornetfé5]. Sinceoy(es) has

a maximum of the value ate, in the vicinity of e it can
be approximated as
Alec—es)%, (4)

where the multiplication factoA depends on the probability

00~ 0c—

distribution P. A complete description of the system can be

obtained by solving the differential equati¢®). After sepa-
ration of variables the integral arises

1-P(e)
t:'BJ de oo—Ee[1-P(e)] +C,

where the integration consta@tis determined by the initial
conditiong(t=0)=0.

(5

The creep rupture of the viscoelastic bundle can be inter-

preted so that forrp< o the lifetime (or the time to failurg
of the bundle is infinite; =00, while above the critical load
o> o global failure occurs at a finite tinte, which can be

vicinity of .. After performing the integration it follows
7

Thus,t; has a power law divergence at with a universal
exponent— 3 independent of the specific form of the disorder
distributionp(e).

For the purpose of explicit calculations we considered the
case of a uniform distribution of the damage thresholds be-
tween 0 and a maximum valus,, thus,p(eq) = 1/e,, and
P(eg)=¢eql/en. The stationary solution, the critical load,
and the corresponding critical strain can be obtainedas

=Ee¢[l—eley], o0.=Ee /4, e.=¢,/2, respectively. Fi-
nally, the solution of the integral Ec(5) taking the initial
condition also into account can be cast into the implicit form

~(oo—0c) Y2 for op>o0,.
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FIG. 1. The analytic solutior(t) given by Egs(8) and(9) for
several values ofy below and abover. . The critical straire. and
the time to failuret; for one example are indicated. by means of acoustic emission techniquesi G_q_) makes
possible to determine experimentally the distribution of the
for op>0. (above thecritical point). The behavior of this failure thresholdg(eg).
analytic solution is illustrated in Fig. 1 for several different  To complement the predictions of the analytic approach

FIG. 2. The analytic solution for the breaking rate Etjl) for
several values ofry below and abover, .

values ofoyg. Monte Carlo simulations of the failure process have been
The time to failuret; can be determined by setting  performed using global load sharif@LS) and local load
=g, in EQ. (9), which results in the form sharing(LLS) for the stress redistribution. The GLS simula-

tion of the creep failure process of a bundleNofibers pro-
ceeds as followsi(i) random breaking thresholds;, i

ti~ 'BZ—W 8Em(ao—crc)‘l/z, (10 =1,... N were chosen according to a probability distribu-
tion p, then the thresholds were put into increasing or@er.
Since the fibers break one by one, the actual load on the
in accordance with the above general arguments. fibers after the failure of fibers iso;=ooN/(N—i), where
A further important general property ef(t) that can be i=0,..., N—1, and the time between the breaking of the

deduced from Eqg2) and(5) is that at the time to failuré; ith and (+1th) fibers reads as;=—(B/E)In(&;,1
the deformation ratele/dt diverges. For disorder distribu- —(oi/E)]/[ei—(o;/E)]). (iii) Finally, the time as a func-
tions P(¢e) defined in a finite interval the exponent is univer- tion of € can be obtained at{si)zE}:Otj(sj) from which
salde/dt~(t;—t) Y2 &i(t) can be determined. The time to failutg of a finite

In order to obtain information about the gradual breakingbundle is defined as the time of the failure of the last fiber. To
of fibers during the creep process, in the experiments theest the validity of the power law behavior gfgiven by Eq.
acoustic signal emitted by breaking events in a short timg7) simulations were performed with various distributions in
interval is investigated. In our fiber bundle model the numbetthe framework of GLS. The results are presented in Fig. 3
of fibers Ny(t) that have been broken up to timecan be  where an excellent agreement of the simulations and the ana-
determined adN,(t)=NP[£(t)], and hence, its derivative Iytic results can be observed. The macroscopic strain of the

provides the quantity systeme(t) and the acoustic response obtained by simula-
tions was also found to be in agreement with the analytic
LN, _dPde ple)Bel oo ] oan e vty how the d d the behavids of
N7t de di- B Eel1-P(o)| , (1D o clarify how the damage process and the behavidf o

is affected by the range of interaction among fibers, i.e., by
the range of load sharing we performed simulations with
which is a measure for the acoustic response. The behavitlLS on a square lattice of 200200 sites, redistributing the
of Eq.(11) for the uniform distribution is illustrated in Fig. 2, load of the failed fiber on its nearest neighbors. The critical
where it can be observed that the acoustic activity, i.e., fibeload o, was first determined as the static fracture strength of
breaking, practically disappears in the plateau regioa(tf  a dry fiber bundle with LLS assuming perfectly elastic be-
(compare to Fig. 1 however, it diverges at; due to the havior for the fibers. Comparing the results of the LLS simu-
diverging deformation rate. lations to the global load sharing results it was observed that
Since during a creep tesf(t) is monitored from which aboveo, the failure of the viscoelastic bundle occurs much
de/dt can be calculated, furthermoréN,/dt is measured more abruptly than in the case of GLS.
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FIG. 4. Comparison of 1f for the LLS and GLS cases as a

FIG. 3. The behavior of the time to failutg for uniform and  ,nction of the external load.

Weibull distributions with two different Weibull moduli for the GLS

case. All the three curves are parallel to each other on a doublfinite value for both LLS and GLS. However, the behavior of
logarithmic plot with an exponent close to 0.5 in agreement with the1 t, in the vicinity of o is completely different in the two
general result Eq(7). cases, for GLS the transition is continuous, while for LLS

. . 14 has a finite jump, analogously to a second and first order
Varying o as a control parameter the two regimes of the,

: oo R ghase transition, respectively.
creep rupture process are characterized by an infinite lif
time belowo, and by a finite one above the critical point.  We are grateful to S. Aicher, G. Dill-Langer, F. Wittel, F.
The nature of the transition between the regimes in the gloTzchichholz, and to J. Astro for valuable discussions. This
bal and local load sharing models can be characterized bywork was supported by the project SFB381. F. Kun acknowl-
studying 1f; as a function of the control parameterin Fig.  edges financial support of the Alexander von Humboldt
4 it can be observed that below the critical point, when noFoundation, the Hungarian Academy of Sciences, and the
global failure occurs, 1/ is zero, while abover, it takes a Research Contract FKFP 0118/2001.
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