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Creep rupture of viscoelastic fiber bundles
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We study the creep rupture of bundles of viscoelastic fibers occurring under uniaxial constant tensile load-
ing. A fiber bundle model is introduced that combines the viscoelastic constitutive behavior and the strain
controlled breaking of fibers. Analytical and numerical calculations showed that above a critical external load
the deformation of the system monotonically increases in time resulting in global failure at a finite timet f ,
while below the critical load the deformation tends to a constant value giving rise to an infinite lifetime. Our
studies revealed that the nature of the transition between the two regimes, i.e., the behavior oft f at the critical
loadsc , strongly depends on the range of load sharing: for global load sharingt f has a power law divergence
at sc with a universal exponent of 0.5, however, for local load sharing the transition becomes abrupt: at the
critical loadt f jumps to a finite value, analogous to second- and first-order phase transitions, respectively. The
acoustic response of the bundle during creep is also studied.
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Fiber reinforced composites are of great technological
portance due to their very good performance under extre
circumstances. Under high steady stresses these fiber
posites may exhibit time-dependent failure called creep r
ture, which limits their life time and consequently has a hi
impact on the applicability of these materials for constru
tion elements. Both natural fiber composites such as w
@1,2# and various types of fiber reinforced composites@3–5#
show creep rupture phenomena, which have attracted
tinuous theoretical and experimental interest over the p
years. The underlying microscopic failure mechanism
creep rupture is very complex depending on several cha
teristics of the specific types of materials, and is far fro
being well understood. One of the most important aspect
creep rupture is the statistics of life time~or time to failure!
as a function of the external steady load, however, onl
limited number of systematic experimental works is ava
able for fiber reinforced composites@3–5#, more information
has been accumulated about natural fiber composites@1,2#.
In Ref. @6# a theoretical model of creep rupture of britt
matrix composites reinforced with time-dependent fibers w
worked out in the spirit of the classical model of Colem
@7#. For natural fiber composites a so-called damage accu
lation model has been developed, which simply assumes
the time derivative of the accumulated damage depends
ponentially on the external load history of the specimen@8#.

In the present paper we study the creep rupture of fi
composites where the fibers have viscoelastic behavior
the microscopic damage mechanism leading to creep rup
is the strain-dependent breaking of fibers under the time e
lution of the deformation of the system. Creep failure te
are usually performed under uniaxial tensile loading wh
the specimen is subjected either to a constant loads0 or to
an increasing load~ramp loading! and the time evolution of
the damage process is followed by recording the strain« of
the specimen and the acoustic signals emitted by mi
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scopic failure events. In the present study we focus on
general aspects of creep rupture, i.e., the behavior of the
time of the bundle as a function of the external load,
dependence on the range of load redistribution, furtherm
general aspects of the acoustic response of the bundle
considered without fitting the theoretical results to any s
cific materials.

In order to work out a theoretical description of cre
failure of viscoelastic fiber composites, we improve the cl
sical fiber bundle model@7,9# that has proven very successf
in the study of fracture of disordered materials@10–19#. Our
model consists ofN parallel fibers having viscoelastic con
stitutive behavior. For simplicity, the pure viscoelastic b
havior of fibers is modeled by a Kelvin-Voigt element th
consists of a spring and a dashpot in parallel and result
the constitutive equations05b«̇1E«, whereb denotes the
damping coefficient, andE the Young modulus of fibers, re
spectively. This equation provides the time-dependent de
mation«(t) of a fiber at a fixed external loads0 ,

«~ t !5
s0

E
@12e2Et/b#1«0e2Et/b, ~1!

where«0 denotes the initial strain att50. It can be seen tha
«(t) converges tos0 /E for t→`, which implies that the
asymptotic strain fulfills Hook’s law.

If no fiber failure occurs Eq.~1! would fully describe the
time evolution of the system. Motivated by the experimen
observations of the acoustic response@21# of fiber compos-
ites during creep, we introduce a strain controlled failu
criterion to incorporate damage in the model: a fiber fa
during the time evolution of the system if its strain exceed
damage threshold«d , which is an independent identicall
distributed random variable of fibers with probability dens
p(«d) and cumulative distributionP(«d)5*0

«dp(x)dx. Simi-
lar strain controlled breaking was recently used in Ref.@20#.
Due to the validity of Hook’s law for the asymptotic stra
values, the formulation of the failure criterion in terms
strain instead of stress implies that under a certain ste
©2002 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 032502
load the same amount of damage occurs as in the cas
stress controlled failure, however, the breaking of fibers
not instantaneous but distributed over time. When a fi
fails its load has to be redistributed to the intact fibers. As
simplest approach, we assume global load sharing@10,15–
19#, i.e., after a failure event the excess load is equally d
tributed among the intact fibers, and hence, at a certain s
« the load on the surviving fibers of the numberNs(«) can be
cast into the forms(«)5s0N/Ns(«)5s0 /@12P(«)#. The
time evolution of the system under a steady external loads0
is finally described by the equation,

s0

12P~«!
5b«̇1E«, ~2!

where the viscoelastic behavior of fibers is coupled with
failure of fibers in a global load sharing framework.

For the behavior of the solutions of Eq.~2! two distinct
regimes can be distinguished depending on the value of
external loads0 . Whens0 is below a critical valuesc Eq.
~2! has a stationary solution«s , which can be obtained by
setting«̇50,

s05E«su12P~«s!u. ~3!

It means that until this equation can be solved for«s at a
given external loads0 , the solution«(t) of Eq. ~2! con-
verges to«s whent→`, and no macroscopic failure occur
However, whens0 exceeds the critical valuesc no station-
ary solution exists, furthermore,«̇ remains always positive
which implies that fors.sc the strain of the system«(t)
monotonically increases until the system fails globally a
time t f .

In the regimes0<sc Eq. ~3! also provides the asymptoti
constitutive behavior of the fiber bundle that can be m
sured by controlling the external loads0 and letting the sys-
tem relax to«s . It follows from the above argument that th
critical value of the loadsc is the static fracture strength o
the bundle that can be determined from Eq.~3! as sc
5E«c@12P(«c)#, where«c is the solution of the equation
ds0 /d«su«c

50, as shown by Sornette@15#. Sinces0(«s) has

a maximum of the valuesc at «c , in the vicinity of«c it can
be approximated as

s0'sc2A~«c2«s!
2, ~4!

where the multiplication factorA depends on the probabilit
distributionP. A complete description of the system can
obtained by solving the differential equation~2!. After sepa-
ration of variables the integral arises

t5bE d«
12P~«!

s02E«@12P~«!#
1C, ~5!

where the integration constantC is determined by the initia
condition«(t50)50.

The creep rupture of the viscoelastic bundle can be in
preted so that fors0<sc the lifetime~or the time to failure!
of the bundle is infinitet f5`, while above the critical load
s0.sc global failure occurs at a finite timet f , which can be
03250
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determined by evaluating the integral Eq.~5! over the whole
domain of definition ofP(«). From the theoretical and ex
perimental point of view it is very important howt f depends
on the external load abovesc . Whens0 is in the vicinity of
sc , i.e.,s05sc1Ds0 , whereDs0!sc , it can be expected
that the curve of«(t) falls very close to«c for a very long
time and the breaking of the system occurs suddenly. He
the total time to failure, i.e., the integral in Eq.~5!, is domi-
nated by the region close to«c whenDs0 is small. Making
use of the power series expansion Eq.~4! the integral in Eq.
~5! can be rewritten as

t f;bE d«
12P~«!

Ds02A~«c2«!2 , ~6!

which has to be evaluated over a small« interval in the
vicinity of «c . After performing the integration it follows

t f'~s02sc!
21/2 for s0.sc . ~7!

Thus, t f has a power law divergence atsc with a universal
exponent21

2 independent of the specific form of the disord
distributionp(«).

For the purpose of explicit calculations we considered
case of a uniform distribution of the damage thresholds
tween 0 and a maximum value«m , thus,p(«d)51/«m and
P(«d)5«d /«m . The stationary solution, the critical load
and the corresponding critical strain can be obtained ass0
5E«@12«/«m#, sc5E«m/4, «c5«m/2, respectively. Fi-
nally, the solution of the integral Eq.~5! taking the initial
condition also into account can be cast into the implicit fo

t52
b

2E 5 1

A12
4s0

E«m

ln

«

«m
F11A12

4s0

E«m
G1

2s0

E«m

«

«m
F12A12

4s0

E«m
G1

2s0

E«m

2 ln
E«22E«m«1s0«m

s0«m 6 ~8!

for s0,sc ~below the critical point!, and

t5
b

E 5 1

A4s0

E«m

21
F arctan

2
«

«m

21

A4s0

E«m

21

2arctan
21

A4s0

E«m

21
G2

1

2
ln

E«22E«m«1s0«m

s0«m 6
~9!
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BRIEF REPORTS PHYSICAL REVIEW E 65 032502
for s0.sc ~above thecritical point!. The behavior of this
analytic solution is illustrated in Fig. 1 for several differe
values ofs0 .

The time to failuret f can be determined by setting«
5«m in Eq. ~9!, which results in the form

t f'
bp

2
A«m

E
~s02sc!

21/2, ~10!

in accordance with the above general arguments.
A further important general property of«(t) that can be

deduced from Eqs.~2! and~5! is that at the time to failuret f
the deformation rated«/dt diverges. For disorder distribu
tions P(«) defined in a finite interval the exponent is unive
sal d«/dt'(t f2t)21/2.

In order to obtain information about the gradual break
of fibers during the creep process, in the experiments
acoustic signal emitted by breaking events in a short t
interval is investigated. In our fiber bundle model the num
of fibers Nb(t) that have been broken up to timet can be
determined asNb(t)5NP@«(t)#, and hence, its derivative
provides the quantity

1

N

]Nb

]t
5

dP

d«

d«

dt
5

p~«!E«

b F s0

E«u12P~«!u
21G , ~11!

which is a measure for the acoustic response. The beha
of Eq. ~11! for the uniform distribution is illustrated in Fig. 2
where it can be observed that the acoustic activity, i.e., fi
breaking, practically disappears in the plateau region of«(t)
~compare to Fig. 1!, however, it diverges att f due to the
diverging deformation rate.

Since during a creep test«(t) is monitored from which
d«/dt can be calculated, furthermore,]Nb /]t is measured

FIG. 1. The analytic solution«(t) given by Eqs.~8! and~9! for
several values ofs0 below and abovesc . The critical strain«c and
the time to failuret f for one example are indicated.
03250
e
e
r

ior

r

by means of acoustic emission techniques, Eq.~11! makes
possible to determine experimentally the distribution of t
failure thresholdsp(«d).

To complement the predictions of the analytic approa
Monte Carlo simulations of the failure process have be
performed using global load sharing~GLS! and local load
sharing~LLS! for the stress redistribution. The GLS simul
tion of the creep failure process of a bundle ofN fibers pro-
ceeds as follows:~i! random breaking thresholds« i , i
51, . . . ,N were chosen according to a probability distrib
tion p, then the thresholds were put into increasing order.~ii !
Since the fibers break one by one, the actual load on
fibers after the failure ofi fibers iss i5s0N/(N2 i ), where
i 50, . . . , N21, and the time between the breaking of t
i th and (i 11th) fibers reads ast i52(b/E) ln„@« i 11
2(s i /E)#/@« i2(s i /E)#…. ~iii ! Finally, the time as a func-
tion of e can be obtained ast(« i)5( j 50

i t j (« j ) from which
« i(t) can be determined. The time to failuret f of a finite
bundle is defined as the time of the failure of the last fiber.
test the validity of the power law behavior oft f given by Eq.
~7! simulations were performed with various distributions
the framework of GLS. The results are presented in Fig
where an excellent agreement of the simulations and the
lytic results can be observed. The macroscopic strain of
system«(t) and the acoustic response obtained by simu
tions was also found to be in agreement with the analy
results.

To clarify how the damage process and the behavior ot f
is affected by the range of interaction among fibers, i.e.,
the range of load sharing we performed simulations w
LLS on a square lattice of 2003200 sites, redistributing the
load of the failed fiber on its nearest neighbors. The criti
loadsc was first determined as the static fracture strength
a dry fiber bundle with LLS assuming perfectly elastic b
havior for the fibers. Comparing the results of the LLS sim
lations to the global load sharing results it was observed
abovesc the failure of the viscoelastic bundle occurs mu
more abruptly than in the case of GLS.

FIG. 2. The analytic solution for the breaking rate Eq.~11! for
several values ofs0 below and abovesc .
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 032502
Varying s as a control parameter the two regimes of t
creep rupture process are characterized by an infinite
time belowsc and by a finite one above the critical poin
The nature of the transition between the regimes in the
bal and local load sharing models can be characterized
studying 1/t f as a function of the control parameters. In Fig.
4 it can be observed that below the critical point, when
global failure occurs, 1/t f is zero, while abovesc it takes a

FIG. 3. The behavior of the time to failuret f for uniform and
Weibull distributions with two different Weibull moduli for the GLS
case. All the three curves are parallel to each other on a do
logarithmic plot with an exponent close to 0.5 in agreement with
general result Eq.~7!.
c

ith
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finite value for both LLS and GLS. However, the behavior
1/t f in the vicinity of sc is completely different in the two
cases, for GLS the transition is continuous, while for LL
1/t f has a finite jump, analogously to a second and first or
phase transition, respectively.
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FIG. 4. Comparison of 1/t f for the LLS and GLS cases as
function of the external load.
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